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SUMMARY

This paper deals with the use of the continuous adjoint equation for aerodynamic shape optimization of
complex configurations with overset grids methods. While the use of overset grid eases the grid generation
process, the non-trivial task of ensuring communication between overlapping grids needs careful attention.
This need is effectively addressed by using a practically useful technique known as the implicit hole
cutting (IHC) method. The method depends on a simple cell selection process based on the criterion of
cell size, and all grid points including interior points and fringe points are treated indiscriminately in the
computation of the flow field. This paper demonstrates the simplicity of the IHC method for the adjoint
equation. Similar to the flow solver, the adjoint equations are solved on conventional point-matched and
overlapped grids within a multi-block framework. Parallel computing with message passing interface
is also used to improve the overall efficiency of the optimization process. The method is successfully
demonstrated in several two- and a three-dimensional shape optimization cases for both external and
internal flow problems. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For engineering optimization, the choice of the method used depends on the cost of evaluating
the objective function, the availability of gradient information and robustness of the optimization
technique. Among optimization techniques, there is the general distinction of gradient-based and
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non-gradient-based methods. In gradient-based methods, gradient information can be found using
finite difference methods [1, 2] or adjoint solutions [3, 4]. Non-gradient-based methods include
direct search method and stochastic method, among which evolutionary algorithms [5, 6] have
gained considerable attention in recent years. Such methods typically involve hundreds or even
thousands of analysis to locate a near optimal solution even for fairly simple cases. Even if
the use of surrogate models leads to a considerable reduction of computational cost, gradient-
based optimization algorithms usually outperform evolutionary algorithms in terms of convergence
speed [7]. The primary concern is the computational expense of the function evaluations, especially
those that involve large-scale computations.

For gradient-based optimization methods, the calculation of cost function gradients with respect
to the design variables or parameters that defines the shape is the main challenge. The traditional
method of finite difference [1, 2] achieves gradients by directly perturbing the design variables
used to define the geometry deformation, in which the number of flow solutions is proportional
to the number of design variables. This method can be extremely expensive in practical appli-
cations involving large number of design variables. In contrast, the adjoint method produces
gradient information without the cost increasing with the number of design parameters. The
spectacular success and efficiency of this approach have been well demonstrated by Jameson
[3, 4] for complex aerodynamic shape design problems. Using techniques of control theory, the
gradients of the cost function are indirectly determined by solving the adjoint equations, which
have coefficients determined from the flow equations. Because of the similarity of the adjoint
equations to the flow equations, the same numerical methods, which are efficient for the solu-
tion of the flow equations, can also be effectively used for the adjoint equations. The cost for
solving the adjoint equations will be approximately the same as the cost for solving the flow
equations. Thus, the true advantage is that the new design can be determined with roughly the
computational cost of two flow solutions but independent of the number of design variables
involved.

However, the issues involved in computing the aerodynamics around complex configurations
must also be effectively handled if the adjoint method is to be used for realistic engineering
applications. To handle topologically complex problems such as a full aircraft configuration,
a multi-block approach is preferred over the single-block approach. The multi-block approach
seeks to break a complex computational domain into smaller regions each of which can be
represented by relatively simple grids. Such a multi-block approach also depends on whether
zonal boundaries exactly align to one another or arbitrarily overlap each other. The former is
conventionally termed matched multi-block grid and the latter the overset or Chimera grid. The
overset grid approach allows for arbitrary boundary interface, in which the grids can be gener-
ated independently for different zones or components, and grid overlaps are allowed. This very
significantly eases the grid generation process compared with the matched grid approach. Gener-
ally, the overset method provides great flexibility to handle topologically complex configurations
[8–12].

To exploit the flexibility of overset methods, two additional issues need to be addressed. The
first is the major hurdle to creating the data structure that specifies the interconnectivity among
the overset grids. The other is how to implement the proper communication among overlapping
multi-block grids to ensure that the computation does not suffer from any artifacts arising from the
multi-block decomposition. While simple at first sight, the generation of the grid connectivity for a
system of overlapping grids is an expensive and daunting task, although some existing connectivity
codes for overset grid (such as PEGSUS [10], OVERTURE [11] and FASTRAN [12]) have
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attempted to ameliorate this. These codes are usually long and involve some logically complicated
procedures, such as automatic hole cutting, ADT operations, overlap optimization, projection of
overlapping viscous grid surfaces and other steps.

A recent approach that efficiently addressed such complications in overset methods is the implicit
hole cutting (IHC) method as introduced by Lee and Baeder [8]. This approach is a cell selection
process based on the main criterion of cell size, and all grid points including hole interior points and
hole fringe points are treated indiscriminately in the flow computation. In contrast to the hole cutting
method in traditional overset codes and methods, this approach chooses the grids based on cell size
when comparing the grid overlapping regions and the hole cutting process around bodies is a by-
product of this operation. The key advantages of this approach lie in the simplicity of the concept and
its implementation, in contrast to the careful book keeping approach of the common methods used in
traditional overset grid codes. Potentially, these features also ease the implementation of the multi-
grid algorithms, which are rarely used in overset methods. The use of IHC method as an inter-grid
communication method within a hybrid multi-block framework amenable for the implementation
of a multi-grid method and parallel computation has previously been demonstrated by the authors
[9]. The convergence, accuracy and efficiency particularly for large-scale computations of realistic
aerodynamic configurations have been well discussed in [9]. As shown in [9], the oversetting
process of the volume grids with 1.6 million cells for a three-dimensional case was efficiently
performed in only 105 s on a single Intel Xeon CPU 2.80GHz. It is expected that the overset grid
techniques may also show distinct advantages when applied to realistic complex design optimization
problems. An important advantage of the overset grid technique from an aerodynamic shape design
standpoint is that since the grid for each aerodynamic component is generated independently,
the need for regenerating grids during the shape modifications process is thus significantly more
straightforward.

In recent years, significant progress is made in aerodynamic design optimization using adjoint
equation method based on unstructured grid [13, 14] and Cartesian grid [15, 16] in handling
complex configuration challenges. Because of the above-mentioned advantages of overset
methods, demonstration of the use of overset grid method for solving the adjoint equations
to handle shape optimization problems is also reported in the literature [17–19]. Elliott [17]
demonstrated the use of a discrete adjoint analysis by extending the direct sensitivity solver
based on the OVERFLOW connectivity code [17] for two-dimensional problems. As it is based
on the OVERFLOW concept in handling overset grid, the same challenges are faced for the
adjoint solver. Lee and Kim [18] further demonstrated the discrete adjoint formulation to opti-
mize three-dimensional configurations based on the traditional overset grid concept used in the
PEGSUS code.

As for the choice of adjoint method used, Kim et al. [20] recently concluded that gradients from
the continuous adjoint method are in good agreement with those computed by finite difference
methods. Whether to use the continuous or discrete adjoint approach, there seems to be indications
that the continuous adjoint formulation works best for the interior of the domain and the discrete
adjoint for the boundary conditions [21].

For the present work, the benefits of the IHC overset grids method are demonstrated for the
solution of the continuous adjoint equation. As noted above, unlike the other overset methods, the
present scheme would greatly ease the organization and inclusion of the adjoint solver and thus
facilitate the use of the adjoint method for engineering shape optimization. The remainder of the
paper is organized as follows. The formulations of the adjoint equations used are outlined in the
Section 2, where the IHC method is also included in the discussion. In Section 3 the concept is
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illustrated via four test cases covering both inverse design and drag minimization. The conclusion
that includes an outlook is in Section 4.

2. NUMERICAL METHODS

2.1. Governing equations for fluid motion

The governing flow equations can be written in the usual integral form

�
�t

∫ ∫ ∫
�

wdV +
∫ ∫

��
f ·ndB=0 (1)

where � is an arbitrary control volume with the closed boundary surface B and n is the unit
normal vector in outward direction. The vector of state variables w is defined as

w=(�,�u1,�u2,�u3,�E)T

where � is the density, u1, u2 and u3 are the three Cartesian velocity components, E is the total
energy of the flow and T denotes the transpose. The flux tensor f consists of a convective part for
an inviscid flow and an additive diffusive part for a viscous flow.

2.2. Summary of the design problem

The flow characteristics are functions of the flow variables w and the physical boundary of the
body, which may be represented by a function F . Here, w is not independent of F . The design
objective is measured by a cost function, which is defined by some aerodynamic properties such
as the drag coefficient for a drag minimization problem or the deviation from a given pressure
distribution for an inverse design problem. The adjoint equations can be derived following the
general approach proposed by Jameson [22].

In general, the cost function I can be defined by

I = I (w,F) (2)

A change in the geometry F results in a change for the cost function I

�I = �IT

�w
�w+ �IT

�F
�F (3)

where T denotes the transpose.
From control theory, the governing equations of the flow field can be introduced as a constraint

so that the final expression for the gradient does not require reevaluation of the flow field. Generally,
the governing equation R, which expresses the dependence of w and F within the flow field
domain �, can be written as

R(w,F)=0 (4)

Thus, �w can be determined from the equation

�R=
[

�R
�w

]
�w+

[
�R
�F

]
�F=0 (5)
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By introducing a Lagrange multiplier �, we get
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In order to eliminate the explicit dependence of �I on �w, � has to satisfy the following adjoint
equation:

�I
�w

=
[

�R
�w

]T
� (7)

With the first term in �I eliminated, we have

�I =G�F (8)

where

G= �IT

�F
−�T

[
�R
�F

]
(9)

Equation (8) relates the cost variation �I directly with shape variation �F . Since �I is independent
of �w, the gradient of I with respect to an arbitrary number of design variables can be determined
without the need for any additional flow field evaluations. Once the adjoint equation is solved, the
gradient direction can be determined. The process of computing the gradient can be repeated to
follow the direction provided by some searching method, such as the steepest descent direction,
until a minimum is reached.

The above general procedure can be applied to the Euler equations and the specific cost functions.
A detailed description of the derivation for the cases of inverse design and drag minimization with
constraint conditions is presented in the Appendix. From the derivation, we can notice that if the
cost function is different, the only changes for the derived formula are the boundary conditions for
the adjoint equations and the formula for the computation of �I . The adjoint equation maintains
the same form.

2.3. Space discretization and time integration for adjoint equation

The properties of the adjoint equations are very similar to the flow equations. Thus the same
numerical methods, which have been proven to be efficient for the solution of the flow equations,
can be applied to solve the adjoint equations efficiently as well. In the present study, only steady-
state solutions are considered. A time marching method is used to solve both the flow equations
and adjoint equations.

The governing equations for fluid motion and the adjoint equations are solved by the well-
known Jameson–Schmidt–Turkel (JST) scheme [23, 24], which is a finite volume method with
central differencing and artificial dissipation. In this method, the solution domain is divided into
small hexagonal cells by joining the cell vertices by straight lines. In the JST scheme, a blend
of second-order and fourth-order differences provides first-order dissipation around shocks and
third-order dissipation in smooth flow region. A multi-stage Runge–Kutta scheme [23] is used
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for the time integration. In order to increase the stability range and relax the restriction on
the Courant–Friedrichs–Lewy number so that a larger time step can be used, implicit residual
smoothing is employed. In this study, the five-stage Runge–Kutta scheme is implemented with
residual smoothing applied at stage 1, 3 and 5 [25].

More details for these numerical techniques can be found in the References [23–25]. As previ-
ously noted above, the same numerical methods are applied to solve the adjoint equations and flow
equations.

2.4. Overset grid strategy for adjoint equation solver

The present study exploits the benefits and straightforwardness of the IHC method [8, 9] for the
solution of the continuous adjoint equation on overset grids. For this work, the conventional point-
matched grids and overset grids are combined within a single framework. The IHC method is
used to efficiently get the grid connectivity among the overlapping blocks of the grid in the hybrid
multi-block framework. Details are found in References [8, 9]. However, for completeness the
method is outlined here.

The method is a cell selection process principally based on the criterion of cell size. In the
traditional overset grid usage, the concept of ‘donor’ and ‘receiver’ is used to refer the points
involved in the transfer of inter-grid information. Here, the donor cell for a receiver point in one
grid is identified as the cell on another grid that contains the receiver point. The ‘hole cutting effect’
of the wall is felt using a simple but important observation that cell size or density is progressively
smaller toward the wall. The fundamental hole cutting algorithms for the IHC method are based
on three basic steps as follows:

(1) A quick first-order inside/outside cell test. The test that checks whether a point is inside or
outside a cell is required in every step of the donor search. Generally, a quick cross and dot
product test is used to identify the likely donor cell of the current test point.

(2) High-order inside/outside cell test. Once the cross product test has identified a cell as a likely
donor, an unambiguous test is required for the determination of computational coordinates
(�) of the test point within the cell. Usually, the linear or the higher-order Hermit cubic
[26] coordinate transform is applied between the physical coordinate x and computational
coordinate �. Here, Newton iteration is used to determine the value of � in the transformed
space. Convergence of � to a value within the range 0 to 1 indicates that the test points
are inside the cell. This cell becomes a candidate for the optimum donor of the current
test point. In most cases, the linear transform provides satisfactory accuracy for reduced
computing cost.

(3) Donor cell selection based on the cell size. In the case of multiple donor cells, the one with
the smallest cell size (or other cell properties) may be selected as the optimum donor cell.

In order to efficiently implement the IHC method in the current hybrid multi-block framework,
a few important concepts are introduced. First, we introduce the concept of cluster. A cluster is
usually generated around one component, such as a wing or a body. In practice, each cluster can
be generated for one geometric component independent of other components. Certainly, a cluster
can also be an arbitrary collection of matched grid blocks that cover a certain region of the flow
field. A cluster is usually a matched multi-block grid, which consists of one or more blocks with
matched boundaries between neighboring blocks. When implementing the IHC method, only the
grid blocks in different clusters are needed to check the overlapping relationship. The value at
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a receiver point in one cluster will be interpolated from the donor cell in another cluster. The next
concept is that in order to efficiently get the grid connectivity among the grid blocks in different
clusters, all the boundaries of a block are classified as the physical boundary, ‘inner boundary’
and ‘outer boundary’. The physical boundary will impose the physical boundary conditions for
the flow solver, such as wall boundary, far-field boundary and inlet or outlet boundary. The ‘inner
boundary’ is the boundary that exactly connected the matched grid blocks and also where the
boundary points will exchange the information through two layer of halo cells. The outer boundary
is different from the above two types of boundaries. In the current hybrid multi-block framework,
the ‘outer boundary’ is just the overset boundary. The boundaries of a whole cluster only consist of
the physical boundary and ‘outer boundary’. In this study, along each ‘outer boundary’, two-layer
halo cells are introduced to join the grid connectivity and become the hole fringe points in order
to ensure the proper transfer among the grid blocks.

In this work, the IHC method is developed to accommodate the cell-centered finite volume
scheme, which is used in the adjoint equation solver and flow solver. In the present method used,
the receiver points are allocated at cell center and the stencil points consist of the grid vertices in
the corresponding donor cells. All points, whether they fall inside or outside a solid body, will be
treated indiscriminately.

Generally, the information transfer from a donor cell to a receiver cell is completed by an
interpolation algorithm. A simple interpolation method is to directly transfer the flow variables
from the center points of donor cells to the receiver points. However, the errors introduced by
the simple interpolation may lead to a poor convergence for the adjoint equation. In the current
method, a first-order trilinear interpolation scheme is used with little additional computational cost,
in which four (for two-dimension) or eight (for three-dimension) vertices of the donor cell form
the interpolation stencil points for the receiver point. The values at the vertices can be obtained by
averaging the values at the surrounding cell centers. The variables at the receiver point can then
be easily obtained by using a trilinear interpolation over this set of stencil points. Results of the
test cases shown in the present work are obtained by using the trilinear interpolation scheme as
follows:

P�1,�2,�3 =
1∑

i=0

1∑
j=0

1∑
k=0

�i1(1−�1−i
1 )� j

2(1−�1− j
2 )�k3(1−�1−k

3 )P̄i, j,k (10)

which is consistent with a globally second-order scheme used in the current solver. Here, P�1,�2,�3
is the function value at interpolated point and P̄i, j,k are the function values at the stencil points.
(�1,�2,�3) are the values of the computational coordinate � in three dimensions.

In this study, with the use of the IHC method, the computational coordinates � in Equation (10)
have been determined by Newton’s method during the oversetting process. Then � are stored
and used for the interpolation of the variables among the overlapping grid blocks. Therefore, the
determination of � not only addresses the problems of searching donor cell but also simplifies the
interpolation of the variables among the overlapping grid blocks in the flow solver and the adjoint
equation solver. More details and demonstrations of the IHC overset grid strategy can be found in
Reference [9].

2.5. Numerical implementation for design optimization

In this work, the adjoint equations and the flow governing equations are coupled with each other and
solved based on the conventional point-matched grids and overlapped grids within a multi-block
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framework. Parallel computation with message passing interface (MPI) is implemented to speed
up the computation.

The performance of the optimum design strongly depends on how well the geometry repre-
sentation method can approach the optimum shape. In Reference [27], Wu et al. compared three
geometric representation methods for various transonic inverse design cases and suggested that
the mesh-point method can reach higher accuracy although it may need more design cycles than the
shape function method does to the optimum point. Therefore, in the present study, we choose the
mesh-point method to adjust the shape of the body surface to be designed, in which the coordinates
of all the mesh points defining the surfaces to be designed are considered as design variables.
Hence, the numbers of design variables can be very large.

Generally, in the design process, the design variables are updated based on the gradient infor-
mation. In the current study, the adjoint equation method is used to obtain the gradient information
for the optimization design by combining with overset grid strategy to facilitate the treatment of
complex aerodynamic configurations. The design procedure in one design cycle used in this work
can be summarized as follows:

(1) Obtain the grid connectivity among the overlapping grid blocks using IHC method.
(2) Solve the flow governing equations (Equation (1)) to get the values for flow variables based

on appropriate boundary conditions, including physical boundary, inner boundary and outer
boundary.

(3) Solve the adjoint equations (Equation (A10) in Appendix) for � subject to appropriate
boundary conditions similar to those for the flow governing equations.

(4) Perturb each design variable and calculate the resulting changes of the cost function �I . The
gradient can be computed by evaluating the geometric variation integrals for each design
variable based on the corresponding formula (Equation (A12) or Equation (A17)).

(5) Make the implicit smoothing for the gradient to maintain the smoothness of the designed
surface.

(6) Introduce the gradient into a one-dimensional optimization search procedure.
(7) Update the shape based on the gradient information and then generate the new mesh by

perturbing the old mesh.
(8) Repeat steps 1–7 until convergence is reached.

As shown in the above procedure, in each design cycle, the grid connectivity information
among the overlapping grid blocks using the IHC method should be achieved first. Thereafter,
the flow governing equations and adjoint equations can be solved subject to appropriate boundary
conditions. As a consequence, the gradient is obtained in the following way. Small perturbations are
imposed to an initial shape with each design variable being perturbed. Then the resulting variation
of the cost function �I for each perturbed design variable can be calculated directly from the
corresponding formula (see such as Equation (A12) or Equation (A17) in the Appendix), in which
all the variations of flow variables have been eliminated and only the geometric variation integrals
need to be evaluated. Therefore, the corresponding gradient component can be achieved without
additional flow evaluation. Since the coordinates of all the mesh points defining the body surfaces
to be designed are chosen as design variables, all of these surface points need to be perturbed by
an appropriate amount point by point. In this work, the amount of perturbation is usually set to
one thousandth of the characteristic length, for instance, the chord length of an airfoil. When such
a mesh point on the body surface is perturbed, the mesh has to be adjusted once correspondingly.
Generally, the new mesh can be reproduced by using a mesh generator or by perturbing the old
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mesh. In this work, an efficient trans-finite interpolation method [28] is adopted to perturb the old
mesh by interpolating grid displacements, given at the boundary, to yield displacements of all grid
points in the computational domain.

The gradient distribution on the designed surface is usually less smooth than the original shape.
When the gradient information is achieved by evaluating the geometric variation integrals, a
smoothing procedure has to be applied to the gradient in order to maintain the smoothness of the
modified body surface. In this study, the Sobolev implicit smoothing approach [22] is applied.
The smoothing technique effectively enhances the stability and efficiency of design process, which
greatly reduces the number of required design cycles. Then the conjugate gradients [29] are
calculated from the achieved gradient information and are used for optimization instead of the
gradients themselves. In this study, for the first cycle in every five design cycles, the search direction
is reset to the gradient direction in order to avoid error accumulation.

In each design cycle, after the gradient is determined, a one-dimensional search method [30]
is applied to find an optimal step size along the gradient direction so as to accelerate the descent
of the cost function. In this search method, with the initial design set to A, we can find two new
designs B and C along the gradient direction with a chosen step size s and 2s, respectively. The
value of s is adjusted to make the cost function of B less than that of A and the cost function of
C is larger than that of B. Then a parabolic fit can be used to find an approximate local minimum
point D. The step size between A and D is just the optimal one that we are looking for, which is
also used for the initial step size for the next design cycle. The details about this method can also
be found in Reference [30].

Accordingly, the coordinates of the mesh points on the body surface being designed can be
modified based on the gradient information achieved above. Then the mesh should be altered to
accommodate the modified surfaces. With the use of the overset grid strategy in this study, only the
blocks that contain the surfaces being designed are regenerated. The solutions of the previous flow
evaluation and adjoint equation evaluation are used as the initial conditions for the next evaluation
in order to reduce the number of iterations needed.

With the use of an overset grid system, the mesh perturbation should be treated with care
when the changes of the cost function are computed as made in Step 4. The computation of
the partial derivative �R/�F can be obtained in a consistent way without being affected by the
change of the connectivity due to the following reasons. First, the mesh points in most of the mesh
blocks are not perturbed during the design process except the blocks that contain the surfaces
that need to be redesigned. This greatly simplifies the computation of �I . Second, in the IHC
method, all grid points including hole interior points and hole fringe points are treated indiscrim-
inately in the flow computation. Therefore, all points except those inside the bodies of the other
components can have valid values. In the present work, the blocks containing the surfaces to be
designed are suggested not to overlap with the other bodies since the invalid values introduced
by the IHC method for the points inside the bodies may contaminate the computational accuracy
of �I .

To improve turn-around time and increase computational efficiency of the solvers on the hybrid
multi-block grid system, parallel computing using MPI is used in solving both flow and adjoint
equations. The level of parallelism used here is based on coarse grain data decomposition. The
different blocks are automatically distributed by the load-balancing algorithms over a number of
processors available on a parallel computer or networked commodity machines. Where the blocks
are interfacing each other in a matched grid fashion, two layers of halo cells are used beyond
the boundaries of each block to facilitate the implementation of boundary conditions and the
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communication between processors. For the overlapping grids, the fringe points obtained by the IHC
methods are used for the communication. Connectivity information of the blocks and processors
is stored in preprocessed pointer arrays. For each processor, the arrays store the information about
the block numbers and cell numbers that have to be exchanged with another processor. Instead of
exchanging information block by block, all values that need to be transferred to another node are
stored in one array and then sent as one big message to minimize communication overhead. In order
to further alleviate the load of the communication in parallel computing, the interpolated value is
always computed on the processor where the donor cell lies and then sent to the corresponding
receiver cell. This avoids sending all the stencil points from processors where the donor cells
lie to other processors where the corresponding receiver points lie. The numerical tests in our
previous study [9] have demonstrated that the current strategy for parallel computing works well
in conjunction with the IHC method with good efficiency.

3. RESULTS AND DISCUSSIONS

The adjoint method has been used as an optimizer coupled with the flow solver in combination
with the overset method. In this study, the flow governing equations considered are the Euler
equations. As stated previously, the coordinates of every mesh point in the surfaces to be designed
are considered as the design variables. Some two- and three-dimensional design cases are presented
here to demonstrate the accuracy and efficiency of the current method. As the same code is
used for both two- and three-dimensional test problems, even for the two-dimensional cases, a
three-dimensional mesh is needed in the tests.

3.1. Inverse design for a desired pressure distribution

In order to check the accuracy of the current method based on the IHC method, a test was made
for the redesign of an NACA0015 airfoil starting from the NACA0012 based on an overset grid
system. The design objective is to reproduce a desired target pressure distribution, which was
previously obtained from the computation of flow over an NACA0015 airfoil. The cost function
for this problem is defined as given by Equation (A1). Here, the gradient information is calculated
based on the coordinates on y direction for each vertex points. The overset grid system has been
generated for a single airfoil as shown in Figure 1(a) (before hole cutting) and Figure 1(b) (after
hole cutting). The mesh with totally around 5000 grid points is composed of 4 blocks, which are
allowed to overlap each other and distributed over 3 CPUs for parallel computing.

Both subsonic and transonic flow conditions are considered. For the subsonic case, the Mach
number is 0.4 and the angle of attack is 0◦, whereas the Mach number case is set to 0.7 and
the angle of attack is given as 2◦ for the transonic case. Figure 2 shows the comparison of the
initial shape, the target shape and the designed shape for both cases. It can be seen that the
designed shape matches the target shape very well in both subsonic and transonic flow conditions.
Figure 3 shows the comparison of the corresponding pressure distribution on the airfoil surface.
The distribution of Cp for the designed and target shape is almost identical. Figure 4 illustrates
the history of the cost function in successive design cycles. It is apparent that the transonic case
needs much more design cycles than the subsonic case to achieve the same drop in the cost
function, which in this case is the difference in the computed pressure as compared with the target
pressure.
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Figure 1. The overset grid for a NACA0012 airfoil: (a) before implicit hole cutting
and (b) after implicit hole cutting.
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Figure 2. The designed shape, initial shape (NACA0012) and target shape (NACA0015) after the inverse
design for two cases: (a) Ma=0.4, �=0 and (b) Ma=0.7, �=2.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1332–1356
DOI: 10.1002/fld



1344 W. LIAO AND H. M. TSAI

Figure 3. Comparison of the initial pressure distribution and designed pressure distribution for two cases:
(a) Ma=0.4, �=0 and (b) Ma=0.7, �=2.

3.2. Constraint design for NACA0015 airfoil

In this case, the design optimization problem for the NACA0015 airfoil with a constraint condition
is considered. The design objective is drag minimization without lift reduction. The computation
is performed at a Mach number of 0.8 and an angle of attack of 1◦. Under the transonic condition,
the drag is the pressure drag of the airfoil mainly caused by the shock wave present. The objective
function for this problem can be written as

I ′ =Cd −�min(Cl −Cl0,0) (11)
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Figure 4. Convergence history of the cost functions for two design cases, i.e. Case 1: Ma=0.4,
�=0 and Case 2: Ma=0.7, �=2.

where � is a Lagrange multiplier. Based on the theorems in optimization [31], the first-order
method is used to solve the constrained minimization problem with an iterative process:

Xk+1 = Xk−�∇X I
′

�k+1 = �k+ε∇� I
′ (12)

Here, X are the design variables. If Cl�Cl0

�I ′

�X
= �Cd

�X
,

�I ′

��
=0 (13)

If Cl<Cl0

�I ′

�X
= �Cd

�X
−�

�Cl

�X
,

�I ′

��
=−(Cl −Cl0) (14)

For this case, we can use the same cost function as defined by Equation (A14). I =Cd can be
obtained by setting �1=1, �2=0 while I =Cl can be got by setting �1=0, �2=1. Then �Cd/�X
and �Cl/�X can be solved individually.

The overset grid system used here is similar to that in Case 1. Figure 5 shows the comparison
of the initial shape and designed shape. Figure 6 indicates the Mach number contours for the
initial solution and the designed shape. It can be seen that the strong shock in the initial solution is
significantly weakened in the redesigned airfoil after 30 design cycles. Figure 7 gives the history of
the cost function, drag efficient and lift efficient. The drag coefficient has dropped to approximately
20% of the initial value while the lift coefficient is not reduced.

3.3. Drag minimization for dual airfoils

The problem of testing two airfoils side by side brings out the issues of overset grids more
poignantly. The problem is a drag minimization of one of the airfoil in the presence of the
other under the transonic flow conditions at a Mach number of 0.755 and an angle of attack of
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Figure 5. The initial shape and the designed shape after 30 design cycles of reducing drag
without lift reduction for Ma=0.8, �=1.

Figure 6. Comparison of the Mach number contours for Ma=0.8, �=1 before design and after design.
- - - -, before design; —, after design.
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Figure 7. Convergence history of the cost function, drag and lift in the design of reducing drag without
lift reduction for Ma=0.8, �=1.

0.016◦. The drag coefficient for the lower airfoil is chosen as the cost function here as given by
Equation (A14) with �1=1, �2=0. This case is a challenging test since there is a strong shock
across the overlapping grid between the two airfoils. The grid generation for this case is simple
and straightforward due to the overset grid strategy, as two grids with each for one airfoil can
be independently created and then assembled. The four different blocks of grid with more than
10 000 points are distributed over 3 CPUs for parallel computing.

Figure 8(a) and (b) shows the overlapping grid system for the dual NACA0012 airfoils before
and after IHC, respectively. Figure 9 illustrates the Mach number contours for the initial solution
and those for the designed shape. The convergence history of cost function for this case is presented
in Figure 10. As shown in Figure 10, the drag coefficient for the lower airfoil is reduced by up to
44% of the initial values after five design cycles. It assumes a flatter shape on the upper surface
at the forward side of the lower airfoil and the Mach contours show a weaker shock to the rear of
the airfoil.

3.4. Inverse design for a turbine stator

This is a full three-dimensional case for an inverse design of a turbine stator. The use of overset
grid is particularly pertinent for this class of problem as grid generation is a challenge for highly
curved blades that would have to match with the side walls, inlet and outlet plane if a matched
multi-block grid system is used. With an overset method, the grid over the surface could be
created independent of the background grid. The design objective is to reproduce a prescribed
target pressure distribution on the stator surface with the cost function defined by Equation (A1).
The isentropic exit Mach number is 0.844, and the inflow angles are −28◦. The configuration
and the overset grid for the turbine stator are shown in Figures 11 and 12. The grid containing a
total of 170 thousand points consists of 6 blocks, which are distributed over 6 CPUs for parallel
computing. The difference between the initial shape and the target shape is only on the suction
side. It is known that the shape on the pressure side has relatively small influences on the pressure
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Figure 8. The overset grid for dual NACA0012 airfoils: (a) before implicit hole cutting and
(b) after implicit hole cutting.

distributions. In this case, the gradient information is calculated for each vertex point in the axial
direction.

Figure 13 shows the comparison for the initial shape, the designed shape and the target shape
while Figure 14 shows the history of the cost function with successive designs. In this case, the
cost function initially drops rapidly and then slowly after 10 design cycles. The value of the cost

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1332–1356
DOI: 10.1002/fld



AERODYNAMIC SHAPE OPTIMIZATION ON OVERSET GRIDS 1349

Figure 9. Comparison of the Mach number contours before design and after design for dual airfoils.
- - - -, before design; —, after design.

Figure 10. History of drag reduction for the second airfoil.

function reduces more than two orders in 20 cycles. From Figure 13, it can be seen that the
designed shape is very close to the target shape and the differences observed between them are
very minor. The current results are sufficiently encouraging to demonstrate the power of the overset
method developed for the optimization of complex bodies constructed by composites of different
simpler components.
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Figure 11. The configuration of a turbine stator.

Figure 12. The overset grid for a turbine stator: (a) before implicit hole cutting
and (b) after implicit hole cutting.

Figure 13. Comparison of the designed shape, the initial shape and the target shape for the
inverse design of a turbine stator.
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Figure 14. Convergence history of the cost function in the inverse design for a turbine stator.

4. CONCLUDING REMARKS

An aerodynamic shape optimization method that involves the continuous adjoint equation and the
flow governing equations being solved using overlapped grids is examined in this paper. The use
of overset grids greatly eases the design and optimization of complex aerodynamic configurations
in engineering. The present overset approach makes use of the implicit hole cutting (IHC) concept
[8, 9] within a multi-block grid framework. Parallel computation with MPI was also implemented
to speed up the computation.

The present scheme was tested for several two- and three-dimensional shape optimization cases
for external and internal flows, including inverse design to a desired pressure distribution and drag
minimization with lift constrain. Two-dimensional test cases were made to test and demonstrate
the capabilities of the three-dimensional code that was developed. The test cases show that the
overall adjoint method works well within an overset grid system. The simplicity of the implicit hole
cutting technique previously shown [9] is further demonstrated here for the adjoint equation. As
highlighted above unlike other overset methods, the IHC method greatly eases both the organization
and programming of the adjoint solver on the overlapped meshes. The method is purely a cell
selection process based on the main criterion of cell size, and all grid points including hole interior
points and hole fringe points are treated indiscriminately in the computation. This approach greatly
facilitates the use of the adjoint method for engineering shape optimizations. It is particularly
pertinent for complex shapes that are created via a composite of simpler shapes in an overset grid
manner.

With overset grids, the question of whether it is absolutely necessary to solve the adjoint
equations exactly like the flow equations for the entire domain till the far field is not considered
here in this study. It may well be possible to solve the adjoint equations around the component one
is seeking to optimize using only the overset grids around that particular component. This issue,
of how the boundary conditions for the adjoint solver are to be implemented, is left as a subject
for future investigation.
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APPENDIX A: DERIVATION OF ADJOINT EQUATION FOR THE DESIGN PROBLEMS

For an inverse design case in which the objective is a given pressure distribution on an airfoil in
an inviscid flow, the cost function can be written as

I = 1

2

∫
BW

(p− pd)
2|S2|d	1 d	3 (A1)

where 	i with i=1 to 3 is introduced to describe the three-dimensional computational domain
so that each boundary conforms to a constant value of one of these coordinates. Si denotes the
projection area of the cell face in the 	i direction. pd is the desired pressure and BW stands for
the boundary surface in computational domain corresponding to the airfoil surface in the physical
domain. For convenience, here 	2=0 is considered as the airfoil surface to be designed.

Only steady-state conditions are considered in the current study. The Euler equations in the
computational domain for the steady state can be written as

�Fi
�	i

=0

where Fi = Si j f j and f j is the inviscid flux. Correspondingly, a weak form of the Euler equations
in the computational domain follows:∫

�

�
T

�	i
Fi d�=

∫
��

ni

TFi dB (A2)

where 
 is an arbitrary differentiable function. Then the variation for the weak form of the Euler
equation can be given as ∫

�

�
T

�	i
�Fi d�=

∫
��

ni

T�Fi dB (A3)

where

�Fi =�(Si j f j )= Si j� f j +�(Si j ) f j = Si j A j�w+�(Si j ) f j =Ci�w+�(Si j ) f j (A4)

Ci = Si j A j , A j = � f j
�w

(A5)

The integrations in Equations (A2) and (A3) are performed in the computational domain, �. ��
is the boundary of �. Since Equation (A3) should hold for an arbitrary choice of the test vector

, we are free to choose 
 to simplify the resulting expressions. Therefore, we can set 
=�, the
Lagrange multiplier. Adding Equation (A3) to Equation (A1) and taking its variation, we obtain

�I =
∫
BW

(p− pd)|S2|�pd	1 d	3+ 1

2

∫
BW

(p− pd)
2�(|S2|)d	1 d	3

−
∫

�

��T

�	i
�Fi d�+

∫
��

ni�
T�Fi dB (A6)
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Substitute �Fi of Equation (A4) into Equation (A6)

�I =
∫
BW

(p− pd)|S2|�pd	1 d	3+ 1

2

∫
BW

(p− pd)
2�(|S2|)d	1 d	3

−
∫

�

(
��T

�	i
Ci�w+ ��T

�	i
�Si j f j

)
d�+

∫
��

ni�
T�Fi dB (A7)

In order to eliminate �w explicitly in �I , let

��T

�	i
Ci =0 (A8)

which can also be written as

CT
i

��

�	i
=0 (A9)

To make Equation (A9) time dependent so that a time-marching scheme similar to the flow solver
can be used, we set

��

�t
−CT

i
��

�	i
=0 (A10)

This is the so-called adjoint equation.
Then �I becomes

�I =
∫
BW

(p− pd)|S2|�pd	1 d	3+ 1

2

∫
BW

(p− pd)
2�(|S2|)d	1 d	3

−
∫

�

��T

�	i
�Si j f j d�+

∫
��

ni�
T�Fi dB (A11)

Next consider the boundary integral of flow variations in Equation (A11). Following the similar
procedure, we collect the coefficient of each independent flow variation and set the coefficients
to zero. Then the boundary conditions for � can be obtained. In this manner, we eliminate the
explicit dependence of �I on flow variations on the boundaries. Then we can obtain the final form
of �I

�I = 1

2

∫
BW

(p− pd)
2�(|S2|)d	1 d	3−

∫
�

��T

�	i
�Si j f j d�

−
∫
BW

(�2�S21+�3�S22+�4�S23)pd	1 d	3 (A12)

with the boundary conditions on Bw for the adjoint equation (Equation (A10))

� j n j = p− pd (A13)
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where n j are the components of the surface normal

n j = S2 j
|S2|

As we expect, all flow variations have disappeared and the change of the cost function in
Equation (A12) only depends on the metric variations �S.

If the cost function is different, we can derive the corresponding formula following the same
procedure as above. When the function to derive is a boundary integral, the only changes for the
derived formula are the boundary conditions for the adjoint equations and Equation (A12) for
the computation of �I . The adjoint equation maintains the same form. Considering a case in which
the design objective is to decrease drag coefficient with or without the constraints of lift coefficient,
we can let the cost function be a linear combination of Cd and Cl . For generality, we set

I =�1Cd +�2Cl (A14)

where

Cd = CA cos�+CN sin�= 1

Sref

∫
BW

Cp(S21 cos�+S22 sin�)d	1 d	3

Cl = CN cos�−CA sin�= 1

Sref

∫
BW

Cp(S22 cos�−S21 sin�)d	1 d	3

(A15)

�12 and �2 are the weights. From Equation (A14), we can get I =Cd with �1=1, �2=0 while
we can have I =Cl by setting �1=0, �2=1.

Then we have

I =�1Cd +�2Cl = 1

Sref

∫
BW

Cp(�1S21+�2S22)d	1 d	3 (A16)

with

�1=�1 cos�−�2 sin�

�2=�1 sin�+�2 cosa

Following a similar derivation procedure described earlier for the inverse design problem to obtain
a desired pressure distribution, we have the formula for the change of cost function for every
design variable

�I = 1

Sref

∫
BW

Cp(�1�S21+�2�S22)d	1 d	3−
∫

�

��T

�	i
�Si j f j d�

−
∫
BW

(�2�S21+�3�S22+�4�S23)pd	1 d	3 (A17)

with the boundary conditions on Bw for the adjoint equations

� j S2 j =
2

Sref�∞U∞
(�1S21+�2S22) (A18)
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Once the solutions of the flow equations and the adjoint equations are obtained, the gradient infor-
mation can be achieved by evaluating the geometric variation integrals as given in Equations (A12)
or (A17).
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